If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2+117x-360=0
a = 40; b = 117; c = -360;
Δ = b2-4ac
Δ = 1172-4·40·(-360)
Δ = 71289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{71289}=267$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(117)-267}{2*40}=\frac{-384}{80} =-4+4/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(117)+267}{2*40}=\frac{150}{80} =1+7/8 $
| −7(x+−6)=−6(x+−5)+1 | | 2.5x+8=3.5x | | 8.2-6.72=k | | 20/150•d/30=130/100 | | (8x-60)(5x+(3/8))=0 | | -37-x=-8(x-1)-2x | | -50+3xX=11 | | 16d=144;d=9 | | 58h+112=5, | | -2(12-m)=-22 | | (-3x+5)-(x-6)=x | | 8=-(x-9) | | (8x-3)(5x+120)=0 | | -x-23=55 | | x=(-3x+5)-(x-6) | | 11f=7-14f+5 | | -20s-13s+-3s-(-s)+7s+8=-20 | | -10–9h=-10h | | 4x+3=6x-10 | | 4/x=14.72 | | 4(x+3)/5=4 | | 9e+4=14+8e9 | | -3x10=5x-8 | | 6x-1+5x+18=127 | | 21+28b=42+21 | | 25t=5/5t+1/ | | (X+2)(y+1)=22 | | -4x=5/11 | | 6+2u=5u–6 | | a+15=3(a-1) | | -9+3p=-2+5p+7 | | −7=n−2+3 |